Home work #5

Ch 3: 3.4-3.5

Fri, 01/28/05

<u>Ch. 3</u>

Q17:

No. They will reach the floor at the same time. The important factor is the highness of the table only.

Q22:

For this case the bullet will hit the target above the center.

E7:

a) $v = v_0 - gt$, v at the highest point is equal θ , hence $\theta = v_0 - gt$, or $t = v_0/g = (15 \text{ m/s})/(10 \text{ m/s}^2) = 1.5 \text{ s}$

$$v = v_0 - gt = (15 \text{ m/s}) - (10 \text{ m/s}^2)(1 \text{ s}) = 5 \text{ m/s}$$
, answer: 5 m/s, upward

b)
$$v = v_0 - gt = (15 \text{ m/s}) - (10 \text{ m/s}^2)(2 \text{ s}) = -5 \text{ m/s}$$
, answer: 5 m/s, downward

E11:

a)
$$d = vt$$
, $t = d/v = (150 \text{ m})/(900 \text{ m/s}) = 0.167 \text{ s}$

b)
$$d = \frac{1}{2}gt^2 = \frac{1}{2}(10 \text{ m/s}^2)(0.167 \text{ s})^2 = \frac{1}{2}(10 \text{ m/s}^2)(0.028 \text{ s}^2) = 0.139 \text{ m} = 13.9 \text{ cm}$$

E15:

a)
$$d = \frac{1}{2}gt^2$$
, $t = \sqrt{2d/g} = \sqrt{(2 \cdot 5 \text{ m})/(10 \text{ m/s}^2)} = \sqrt{(1 \text{ s}^2)} = 1 \text{ s}$

b)
$$d_{hor} = v_{hor} t = (6 \text{ m/s})(1 \text{ s}) = 6 \text{ m}$$

E16:

a)
$$v = v_{vert}$$
 - gt , at the high point $v = 0$, hence $v_{vert} = gt$,
$$t = v_{vert}/g = (30 \text{ m/s})/(10 \text{ m/s}^2) = 3 \text{ s}$$

b)
$$d = v_{hor}t = (30 \text{ m/s}) (3 \text{ s}) = 90 \text{ m}$$

CP3:

- a) For both balls $d = \frac{1}{2} gt^2$, hence $t = \sqrt{\frac{(2d)}{g}} = \sqrt{\frac{(2x0.8 \text{ m})}{(10 \text{ m/s}^2)}} = \sqrt{\frac{(1.6/10) \text{ s}^2}{2}} = 0.4 \text{ s}$
- b) Ball A: d = vt = (3 m/s)(0.4 s) = 1.2 mBall B: d = vt = (5 m/s)(0.4 s) = 2 m
- c) No. For both balls: $t_l = 0.4 \text{ s}$ Ball A: $t_{hor} = d/v = (1.2 \text{ m})/(3 \text{ m/s}) = 0.4 \text{ s}$, the total time $t_{tot} = 0.4 \text{ s} + 0.4 \text{ s} = 0.8 \text{ s}$ Ball B: $t_{hor} = d/v = (1.2 \text{ m})/(5 \text{ m/s}) = 0.24 \text{ s}$ the total time $t_{tot} = 0.24 \text{ s} + 0.4 \text{ s} = 0.64 \text{ s}$